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Abstract

Dynamic plastic behavior of a rigid!plastic simply supported circular plate under moderate partial
uniformly distributed impulsive load is complemented by using a uni_ed yield criterion which consists of a
generic of convex piecewise linear yield criteria[ Upper bound and lower bound plastic responses of the plate
under rectangular pulse are obtained^ response behavior of the plate with respect to the Mises criterion is
derived by a proximal manner[ The inconstant circumferential moment distribution and the non!linear ~ow
velocity distribution in the periods corresponding to the two motion phases are suggested in this paper[
Static and kinematic admissibility of the dynamic plastic solutions is discussed and two types of moment
pro_les for the plates under intense dynamic load are supposed for studying in the future[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[

Nomenclature

s0\ s1\ s2\ s9 principal stresses and uniaxial tensile strength
t02\ t01\ t12 principal shear stresses
b weighting coe.cient in the uni_ed yield criterion
ai\ bi "i � 0\ 1# coe.cients in the uni_ed yield criterion
Mr\ Mu\ M9 radial bending moment\ circumferential bending moment and ultimate

bending moment
Qr\ P transverse shear force and rectangular impulsive load
t\ T\t duration of pulse\ duration of and actual response time\ respectively
m½ mass per unit area
R\ a radius variable and radius of circular plate
k¾r\ k¾ u dimensionless radial and circumferential curvature rates
c0i\ c1i\ c2i\ c3i "i � 0\ 3# integral constants of velocity _elds and moment _elds
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rp\ r0\ r1\ rs dimensionless loading radius\ dividing radius of the _rst phase of motion\
the second phase of motion and the static plastic limit state

p9\ ps\ pd dimensionless impulsive load\ static plastic limit load and maximum
statically admissible impulsive load

h response delaying factor
W\ Wf actual displacement response of the plate\ permanently deformed

transverse displacements at the plate center
w¾ 0\ w� 0\ w¾ 1\ w� 1 dimensionless velocity and acceleration responses of the two motion

phases
a\ ad statically admissible loading factor and maximum admissible loading

factor
ke kinetic energy absorbed during the _rst phase of motion

Dimensionless variables
r � R:a\ mr � Mr:M9\ mu � Mu:M9\ p � Pa1:M9\ q � Qra

1:M9\ m � m½a2:M9\ w � W:a[

0[ Introduction

Static deformation of elasto!plastic structures applies only if the loading magnitude is less than
the plastic collapse force[ With impact or explosive blast loading\ however the structures can be
subjected to an intense but short duration pressure or force pulse that exceeds the plastic collapse
force[ The dynamic plastic behavior of beams is investigated su.ciently in the past "Stronge and
Yu\ 0882#\ however\ there are some di.culties to get the analytical solution for plate and shell in
dynamic plastic deformation state because of the complicated constitutive model[ Circular plates
as special structures are always examined by analytical method for their axisymmetric charac!
teristics[ Exact theoretical solutions to dynamic response of a rigid\ perfectly plastic simply sup!
ported circular plate subjected to dynamic load have been studied at _rst by Hopkins and Prager
"0843#[ In the past forty years\ a number of studies "Jones and Oliveira\ 0879^ Jones\ 0878^ Florence\
0866^ Symonds and Wierzbicki\ 0868# have focused on this subject by introducing various boundary
conditions\ loading conditions and plastic ~ow assumptions for circular plate[ So far\ the above
studies are all on the basis of the Tresca yield criterion\ namely maximum shear stress yield
criterion[ Little attention has been paid to investigate the in~uence of yield criteria on the dynamic
plastic behavior of circular plates[ In fact\ strength envelopes of a great of metal materials are in
agreement with the Mises criterion^ strength envelopes of some mild steel and aluminum alloy
close to the twin shear stress yield criterion "Yu\ 0872#\ or the maximum principal deviatoric stress
yield criterion "Hill\ 0840#[ Based on the twin shear stress yield assumption\ Yu and He "0880#
supposed a uni_ed yield criterion "UYC# by introducing a weighting coe.cient in the twin shear
stress yield criterion[ The Tresca yield criterion is a special case of the UYC\ and the Mises yield
criterion can be lineally approximated by the UYC[ Investigating the dynamic plastic response
behavior in view of the UYC has theoretical signi_cance and wide!range applications[ The math!
ematical expression of the UYC is piecewise linear\ so it can be conveniently used to perform
plastic limit analyses of axisymmetric structures[ The authors presented the exact static plastic
solutions of simply supported circular plates subjected to partial uniform distributed pressure in
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view of the UYC "Ma et al[\ 0884#[ In this paper\ dynamic plastic responses are obtained for
circular plate subjected to a uniformly distributed moderate pulse with rectangular pressure!time
history[ The entire plate is divided into two di}erent regions corresponding to two related yield
lines[ A series of results in speci_c conditions of the UYC are derived and compared mutually[

1[ Uni_ed yield criterion

Based on orthogonal octahedron of twin shear element model "Yu\ 0872#\ the UYC assumes
that materials fail when a certain function of the two bigger principal shear stresses reaches a limit
value[ The mathematical expression of the UYC is

t02¦bt01 � C when t01 − t12 "0a#

t02¦bt12 � C when t01 ¾ t12 "0b#

where t02\ t01 and t12 are principal shear stresses and t02 �"s0−s2#:1^ t01 �"s0−s1#:1^ and
t12 �"s1−s2#:1^ s0\ s1 and s2 are principal stresses and s0 − s1 − s2^ C is material strength
parameter^ and b is a weighting coe.cient that re~ects the in~uence of the intermediate principal
shear stress[ Figure 0 shows the projection in deviatoric plane of limit surface of UYC in triaxial
stress state[ Rewriting "0a\ b# in terms of principal stresses\ it has

s0−
0

0¦b
"bs1¦s2# � s9 when s1 ¾

0
1
"s0¦s2# "1a#

0
0¦b

"s0¦bs1#−s2 � s9 when s1 −
0
1
"s0¦s2# "1b#

where s9 is uniaxial yield strength\ b re~ects the e}ect of intermediate principal stress s1 on material

Fig[ 0[ UYC in deviatoric plane[
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strength[ When b varies from 9Ð0\ a family of convex yield criteria those are suitable for di}erent
kinds of materials are deduced[ In particular\ it becomes the Tresca criterion when b � 9 in the
UYC[ The maximum principal deviatoric stress criterion or the twin shear stress criterion is
obtained when b � 0[ The Mises criterion can be approximated by the UYC of b � 9[4[ Expression
of the UYC is obviously a piecewise linear function[

2[ Dynamic equations and boundary conditions

The simply supported circular plate with radius a and thickness h which is subjected to a partial
uniformly distributed transverse load P is assumed that plastic ~ow of the material obeys the
uni_ed yield criterion[ Clearly\ a rigid\ perfectly plastic circular plate accelerates when it is subjected
to larger pressures which satisfy the inequality P − Ps\ here Ps is the static plastic limit load\ if the
pressure is released for a short time[ The plate reaches an equilibrium position "with a deformed
pro_le# when all the external dynamic energy has been expended as plastic work[ It is convenient
to divide the subsequent analysis into the two phases 9 ¾ t ¾ t^ t ¾ t ¾ T for a moderate impulsive
loading\ where t is the duration of pulse and T is the duration of response[

Using the dimensionless variables de_ned in notation\ the governing equations of circular plates
are as follows

1"rmr#:1r−mu−rq � 9 "2#

1"rq#:1r¦rp−mrw� � 9 "3#

and

k¾r � −11w¾ :1r1\ k¾ u � −"1w¾ :1r#:r "4a\b#

where p is a partial uniformly distributed rectangular load[ In the _rst of motion "9 ¾ t ¾ t#\ it
has

p � 6
p9 9 ¾ r ¾ rp

9 rp ¾ r ¾ 0
"5#

and in the second phase of motion "t ¾ t ¾ T#\ it becomes

p � 9 "6#

where rp is dimensionless loading radius[
The yield condition is controlled by the generalized stresses mr and mu[ Figure 1 shows the yield

lines of the uni_ed yield criterion in muÐmr space[ In plastic limit state\ moments of the plate center
"r � 9# satis_es mr � mu � 0 "point A in Fig[ 1#\ the simply supported edge "r � 0# satis_es mr � 9
"point C in Fig[ 1#[ Bending moments of all the points in the plate are located in the sides AB and
BC for the normality requirement of plasticity "Drucker|s postulate#[ The yield conditions of AB
and BC in Fig[ 1 are expressed as follows\

mu � aimr¦bi "i � 0\ 1# "7#
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Fig[ 1[ Uni_ed yield criterion in muÐmr space[

where ai and bi are constants\ they are a0 � −b\ b0 � 0¦b\ a1 � b:0¦b and b1 � 0 corresponding
to the two sides AB "i � 0# and BC "i � 1#[

According to associated ~ow rule\ there are

k¾r � l¾ 1F:1mr\ k¾ u � l¾ 1F:1mu "8#

where F in eqn "8# is plastic potential which is the same as the yield function[ Thus\ the following
equation is deduced\

k¾r � −aik¾ u "09#

Equations "2# and "3# with the aid of eqn "7# give the moment governing equation as follows

11"rmr#:1r1−ai 1mr:1r � −rp¦mrw� "00#

Governing equation of the transverse velocity is derived as the following by substituting eqn
"4a\ b# into eqn "09#

11w¾ :1r1¦ai 1w¾ :"r 1r# � 9 "01#

3[ First phase of motion "9 ¾ t ¾ t#

In the _rst phase of motion\ the plate is subjected to a constant loading p9 in the inner
region 9 ¾ r ¾ rp[ Integrating eqn "01# twice with respect to r predicts the transverse velocity
corresponding to the two sides as follows

w¾ � w¾ 0 6
c00r

0−a0¦c10 9 ¾ r ¾ r0

c01r
0−a1¦c11 r0 ¾ r ¾ 0

"02#
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Fig[ 2[ "a# Case 0 rp ¾ r0^ "b# Case 1 rp − r0[

where\ c0i\ c1i "i � 0\ 1# are integral constants^ r0 is the dividing radius where the moments are
locating at point B in Fig[ 1^ w¾ 0 is the velocity response of the plate center which is a function of
time t[ Continuity and boundary conditions of velocity are "0# w¾ "r � 9# � w¾ 0^ "1# w¾ "r � r0# and
dw¾ :dr"r � r0# are continuous^ and "2# w¾ "r � 0# � 9[ Considering these conditions\ the constants
c0i and c1i in eqn "02# are then derived as\

c00 � −
r−b"1¦b#"0¦b#
0

"0¦b#1−"1b¦b1#r0:"0¦b#
0

\ c10 � 0 and

c01 � −c11 � −
"0¦b#1

"0¦b#1−"1b¦b1#r0:"0¦b#
0

There are two cases of moment response during the _rst phase of motion as shown\ respectively\
in Fig[ 2a and b[ For both the two cases\ the boundary conditions and continuity conditions of
radial moment are] "3# mr"r � 9# � 0^ "4# mr"r � r0# is continuous\ and equals "0¦b#:"1¦b#^ "5#
1mr:1r"r � r0# is continuous^ "6# mr"r � rp# is continuous^ "7# 1mr:1r"r � rp# is continuous^ and "8#
mr"r � 0# � 9[ The conditions "5# and "7# are deduced from the continuity of shear force q in eqn
"2# with the aid of continuity of mr and mu[

3[0[ Case 0 "rp ¾ r0#

For the _rst case\ that the plate is subjected to a rectangular impulsive loading p9 with rp ¾ r0\
the moment response _eld is derived by integrating eqn "00# twice with respect to r as follows

mr0 �
−p9¦mw� 0c10

1"2−a0#
r1¦

mw� 0c00

"2−a0#"3−1a0#
r2−a0¦c20r

−0¦a0¦c30 9 ¾ r ¾ rp "03a#

mr1 �
mw� 0c10

1"2−a0#
r1¦

mw� 0c00

"2−a0#"3−1a0#
r2−a0¦c21r

−0¦a0¦c31 rp ¾ r ¾ r0 "03b#

mr2 �
mw� 0c11

1"2−a1#
r1¦

mw� 0c01

"2−a1#"3−1a1#
r2−a1¦c22r

−0¦a1¦c32 r0 ¾ r ¾ 0 "03c#

where c2i\ c3i "i � 0\ 1\ 2# are integral constants and they are derived from the continuity and
boundary conditions "3#Ð"8# as

c20 � 9\ c30 � 0\ c21 �
p9r

2−a0
p

"0−a0#"2−a0#
\ c31 � 0−

p9r
1
p

1"0−a0#
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c22 � $−
0¦b
1¦b

−
mw� 0c11

1"2−a1#
"0−r1

0#−
mw� 0c01

"2−a1#"3−1a1#
"0−r2−a1

0 #%>"0−r−0¦a1
0 #

c32 � $−
0¦b
1¦b

r0−a1
0 −

mw� 0c11

1"2−a1#
"0−r2−a1

0 #−
mw� 0c01

"2−a1#"3−1a1#
"0−r3−1a1

0 #%>"0−r0−a1
0 #

as well as

mw� 0 �
"2−a0#"3−1a0#

"1−a0#r1
0¦c00r

2−a0
0 $−

0
1¦b

¦
p9r

1
p

1"0−a0#
−

p9r
2−a0
p

"0−a0#"2−a0#
r−0¦a0
0 % "04#

and the dividing radius r0 satis_es

mw� 0 0
0

2−a0

−
c11

2−a11¦mw� 0 0
c00r

1−a0
0

3−1a0

−
c01r

1−a1
0

3−1a1 1
¦"a0−0#c21r

−1¦a0
0 −"a1−0#c22r

−1¦a1
0 � 9 "05#

For given rectangular impulsive loading p9 and loading bearing radius rp\ r0 can be calculated
from eqn "05# by half interval search in the range of "rp\ 0# with the aid of eqn "04# and the
expression of all the integral constants[

3[1[ Case 1 "rp − r0#

When the loading radius is larger with inequality rp − r0\ it leads to Case 1[ The moment
distribution is expressed as follows by integrating eqn "00# twice again

mr0 �
−p9¦mw� 0c10

1"2−a0#
r1¦

mw� 0c00

"2−a0#"3−1a0#
r2−a0¦c20r

−0¦a0¦c30 9 ¾ r ¾ r0 "06a#

mr1 �
−p9¦mw� 0c11

1"2−a1#
r1¦

mw� 0c01

"2−a1#"3−1a1#
r2−a1¦c21r

−0¦a1¦c31 r0 ¾ r ¾ rp "06b#

mr2 �
mw� 0c11

1"2−a1#
r1¦

mw� 0c01

"2−a1#"3−1a1#
r2−a1¦c22r

−0¦a1¦c32 rp ¾ r ¾ 0 "06c#

According to the boundary conditions and continuous conditions "3#Ð"8#\ the integral constants
are rewritten as

c20 � 9\ c30 � 0

c31 �
b1

0−a1

¦
0
1

mw� 0

0−a1

"c11−c10#r1
0−

mw� 0

0−a1 0
c01r

2−a1
0

2−a1

−
c00r

2−a0
0

2−a0 1
c21 � $

0¦b
1¦b

−c31−
−p9¦mw� 0c11

1"2−a1#
r1
0−

mw� 0c01

"2−a1#"3−1a1#
r2−a1
0 %> r−0¦a1

0
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c22 �
p9r

2−a1
p

"0−a1#"2−a1#
¦c21\ c32 � c31¦c21r

−0¦a1
p −

p9r
1
p

1"2−a1#
−c22r

−0−a1
p

as well as

mw� 0 �
"1¦b#p9r

1
0−1"2¦b#

"1¦b#r1
0¦c00r

2¦b
0

"07#

and r0 satis_es

mw� 0c11

1"1−a1#
¦

mw� 0c01

"2−a1#"3−1a1#
¦c22¦c32 � 9 "08#

The dividing radius r0 in the eqn "08# is calculated similar to eqn "05# by using half interval
search in the range of "9\ rp#[ The moment _elds of Case 1 are then determined after substituting
r0 back into all the integral constants and eqns "06# and "07#[

For a given impulsive load P which satis_es the static and kinematic admissibility\ there is a
critical state between the two cases shown\ respectively\ in Fig[ 2a and b[ The critical dividing
radius r0p is obtained from the particular case of r0p � rp � r0[ Then\ if the actual loading radius is
less than the critical dividing radius r0p\ the moment response _elds are calculated using Case 0[ If
not then using Case 1[

Equations "05# and "07# show that w� 0 is a constant during the _rst phase of motion[ The
transverse displacement and velocity at the end of the phase of motion for both cases are\

w � w� 0t
1"c0ir

0−ai¦c1i#:1 "i � 0\ 1# "19#

and

w¾ � w� 0t"c0ir
0−ai¦c1i#:1 "i � 0\ 1# "10#

respectively[ Equation "10# leads to a kinetic energy

ke � pmM9aw� 1
0t

1K "11#

where

K �
"c00#1

3−1a0

r3−1a0
0 ¦

1c00c10

2−a0

r2−a0
0 ¦

"c10#1

1
r1
0¦

"c01#1

3−1a1

"0−r3−1a1
0 #

¦
1c01c11

2−a1

"0−r2−a1
0 #¦

"c11#1

1
"0−r1

0#

which is dissipated plastically during the second phase of motion

4[ Second phase of motion "t ¾ t ¾ T#

The circular plate is unloaded during this phase of motion and\ therefore p � 9 on the whole
plate[ But plastic deformation continues in order to dissipate the kinetic energy present in the plate
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at t � t[ The transverse velocity pro_le during this phase of motion has the same form as eqn "02#
of the _rst phase of motion except the dividing radius r0 is replaced by r1[ Identical to the _rst
phase of motion\ the moment response _eld is again obtained as

mr0 �
mw� 1c10

1"2−a0#
r1¦

mw� 1c00

"2−a0#"3−1a0#
r2−a0¦c20r

−0¦a0¦c30 9 ¾ r ¾ r1 "12a#

mr1 �
mw� 1c11

1"2−a1#
r1¦

mw� 1c01

"2−a1#"3−1a1#
r2−a1¦c21r

−0¦a1¦c31 r1 ¾ r ¾ 0 "12b#

The boundary and continuity conditions to "09# mr"r � 9# � 0^ "00# mr"r � r1# is continuous\
and equals "0¦b#:"1¦b#^ "01# 1mr:1r"r � r1# is continuous^ and "02# mr"r � 0# � 0[ Thus\ the
integral constants are calculated again as

c20 � 9\ c30 � 0

c21 � $−
0¦b
1¦b

−
mw� 1c11

1"2−a1#
"0−r1

1#−
mw� 1c01

"2−a1#"3−1a1#
"0−r2−a1

1 #%>"0−r−0¦a1
1 #

c31 � $−
0¦b
1¦b

r0−a1
1 −

mw� 1c11

1"2−a1#
"0−r2−a1

1 #−
mw� 1c01

"2−a1#"3−1a1#
"0−r3−1a1

1 #%>"0−r0−a1
1 #

as well as

mw� 1 �
−1"2¦b#

"1¦b#r1
1¦c00r

2¦b
1

"13#

and r1 satisfy

mw� 1c11

1"2−a1#
¦

mw� 1c01

"2−a1#"3−1a1#
¦c22¦c32 � 9 "14#

where mw� 1 remains constant during the second phase of motion[
A straight integration of eqn "13# with respect to time predicts the transverse displacement at

the plate center

w1 � 0
1
w� 1"t−t#1¦0

1
w� 0t"1t−t# "15#

when eliminating the two constants of integration by ensuring continuity with the transverse
displacement and velocity at the end of the _rst phase of motion "t � t#[ w� 0 and w� 1 de_ned by eqns
"04# and "13#\ respectively\ are independent on time[ Equation "15# gives w¾ 1 � 9 when t � T\ where

T � ht "16#

T is the total duration of response and h is the response time factor de_ned as follows\

h � 0−w� 0:w� 1 "17#

The associated permanently deformed transverse displacement pro_le is
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Wf � −0
1
w� 1t

1h"h−0#"c0ir
0−ai¦c1i#\ i � 0\ 1 "18#

5[ Static and kinematic admissibility

When the impulsive time t is long enough and the transverse response acceleration w� 0 during
the _rst phase of motion is equal to 9\ the dynamic solutions degenerate to static plastic limit
solutions for the entire plate in plastic state[ The static limit loads are derived from eqns "04# or
"07# as

ps �
1"0¦b#"2¦b#

"1¦b#ð"2¦b#−1"rp:rs#0¦bŁr1
p

"29#

or

ps �
5¦1b

"1¦b#r1
s

"20#

respectively\ for the two cases shown in Fig[ 2a and b[ Where ps is the static plastic limit load^ rs is
the dividing radius which divide the plate into two parts with the moment pro_les responding to
the two lines AB and BC in Fig[ 1[ rs calculated from eqn "05# or eqn "08# with the aid of mw� 0 � 9
and eqns "29# and "20#[ The critical dividing radius in static plastic limit state satisfying rsp � rp � rs

is equal to 1−"0¦b# which has been examined in reference "Ma et al[\ 0884#[
The circular plate can be subjected to a short duration pressure that exceeds the static plastic

limit loading\ but it is necessary to demonstrate that the foregoing theoretical solutions do not
violate the yield condition and are\ therefore\ statically admissible[ The radial moment _eld is a
decrease function according to the yield condition in Fig[ 1[ In order to avoid a yield violation at
r � 9 and r � 0 in the bending moment distribution\ it is necessary to ensure

1mr:1r ¾ 9\ 11mr:1r1 ¾ 9 at r � 9 "21#

1mr:1r ¾ 9\ 11mr:1r1 − 9 at r � 0 "22#

For the _rst phase of motion\ 1mr:1r"r � 9# � 9 is satis_ed automatically at the plate center\
thus it needs only to check 11mr:1r1 ¾ 9[ Di}erentiating eqn "03a# or "06a# twice with respect to r\
the static admissible dynamic load should satisfy

p9¦mw� 0 ¾ 9 "23#

which predicts the maximum dynamic impulsive loading pd0 with the aid of eqns "04# and "05# or
eqns "07# and "08# for the two cases\ respectively[ Meanwhile\ 1mr:1r � 9 at r � 0 predicts another
maximum static admissible impulsive load pd1 since 11mr:1r1 − 9 is satis_ed automatically[ Thus\

mw� 0c11

2−a1

¦
mw� 0c01

3"1−a1#
¦"−0¦a1#c22 � 9 "24#

according to eqns "03c# or "06c#[ pd1 is calculated from eqns "04# and "05# or "07# and "08#\
respectively\ for the two cases with the aid of eqn "24#[ The radial bending moment distribution
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during the second phase of motion from eqn "12# is independent of p9 and time and is statically
admissible[ Thus the static admissible load needs to satisfy the inequality\

ps ¾ p9 ¾ pd � min"pd0\ pd1# "25#

or

0 ¾ a ¾ ad "26#

where pd is maximum statically admissible impulsive loading\ a and ad are de_ned as statically
admissible loading factor and maximum statically admissible loading factor\ respectively\ and

a � p9:ps^ ad � pd:ps "27#

The response acceleration during either the _rst phase of motion or the second phase of motion
is independent to time and the displacement\ velocity and acceleration on the entire plate are
continuous during the entire response time\ so the dynamic solutions are obviously kinematically
admissible[ The theoretical analysis above with 0 ¾ a ¾ ad is statically admissible while the associ!
ated transverse velocity _elds are kinematically admissible[ Thus\ the solution is exact throughout
the entire response of a rigid\ perfectly plastic circular plate[

The moment distributions will violate the yield condition when the impulsive loading P increases
to a − ad[ In order to avoid this violation\ it is convenient to suppose that the moment pro_les are
distributed as shown in Fig[ 4a and b corresponding to the two violating cases plotted\ respectively\
in Fig[ 3a and b[ The velocity pro_les remain as decreasing function^ however\ the acceleration
responses are not constant and the plastic hinge moves during the response time[ The dynamic
solution for the plate under intense impulsive load should be analyzed by numerical method\ which
will be examined in the future[

6[ Analysis results

The foregoing solutions predict maximum transverse displacement response and minimum
statically admissible impulsive load with respect to the Tresca criterion "b � 9#\ minimum trans!

Fig[ 3[ Statically inadmissible moment pro_les] "a# violate the yield condition at r � 9^ "b# violate the yield condition at
r � 0[
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Fig[ 4[ Moment pro_les of intense loading] "a# rp is larger\ "b# rp is smaller[

verse displacement response and maximum statically admissible impulsive load with respect to the
twin shear stress criterion "b � 0#\ respectively[ Solutions of the Mises criterion are between those
obeying the Tresca criterion and the twin shear stress criterion\ and can be approximated by the
special case of the UYC when b � 9[4[ For a given impulse loading radius rp and the pulse force
p9 satisfying statically admissibility\ r0 and r1 locating in the range of "9\ 0# are calculated from
eqns "05# or "08# for the _rst phase of motion and eqn "14# for the second phase of motion\
respectively[ Substituting r0 and r1 into all the integration constants and corresponding equations\
moment response _elds\ velocity response _elds and displacement response _elds of the plate are
then de_ned for the two motion phases[

Figure 5a and b show the moment _elds during the _rst phase of motion when the plate is
subjected by a uniformly impulsive load "rp � 0# with respect to the three special cases of yield
criterion\ with the load factor a � 0 and a � ad\ respectively[ Figure 6 shows the moment _elds
during the second phase of motion which is independent of the loading radius rp and loading
factor a[ Figures 7Ð09 illustrate the permanently deformed transverse displacements\ displacement
responses and velocity responses of the plate center for the three special criterion when rp � 0 and
a � ad[

Figures 00a\ b and 01\ show the moment pro_les\ velocity pro_les during the _rst phase of
motion and the permanently deformed transverse displacements when the plate is subjected to a
concentrated impulsive load with rp � 9[90[ The moment _elds are singular at the plate center
because the shear force at the center is in_nite[ The statically admissible impulsive load pd is close
to the static plastic limit load ps\ thus we need to apply the assumption shown in Fig[ 4b for a fully
rigid!plastic circular plate subjected to concentrated load[ It has been proved that the total static
plastic limit load PT � pr1

pPa1 for concentrated load satis_es PT � 1pM9 no matter what the
weighting parameter b is selected "Ma et al[\ 0884#\ although the moment _elds and velocity _elds
are quite di}erent with di}erent yield criteria[

The pro_le of deformed transverse displacement restore to the pro_le similar to the case of fully
uniformly distributed load since the dividing radius r1 during the second phase of motion is
independent of loading radius rp[ The uni_ed yield criterion\ besides the special case of the Tresca



G[ Ma et al[ : International Journal of Solids and Structures 25 "0888# 2146Ð2164 2158

Fig[ 5[ "a# Moment _elds during the _rst phase of motion "a � 0#[ "b# Moment _elds during the _rst phase of motion
"a � ad#[

criterion\ leads to smooth velocity distribution at the plate center^ meanwhile\ the velocity pro_le
varies depending on the loading radius rp[ The Tresca criterion as a special case of the uni_ed yield
criterion leads to linear velocity pro_les and there is singularity at the plate center for velocity
_elds\ in spite of rp[

Relation of the maximum statically admissible loading factor ad to loading radius rp is plotted
in Fig[ 02\ which shows clearly the two loading action regions corresponding to the two statically
admissibility shown in Fig[ 3a and b with respect to the three yield criteria[ Relation of response
delaying time factor h has a very close outline to Fig[ 02 as shown in Fig[ 03^ however\ they
completely overlap when the Tresca criterion is used[ It leads to ad � 1 and h � 1 for the case of
fully uniformly distributed impulsive load\ when b � 9\ which is the same as the results examined
by Hopkins and Prager "0843#[

Figure 04 demonstrates that the e}ect of yield criteria to the dynamic solution is greater than
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Fig[ 6[ Moment _elds during the second phase of motion[

Fig[ 7[ Permanently deformed transverse displacements "rp � 0\ a � ad#[

that to static plastic limit state[ Figure 05 shows that the Tresca criterion estimates the maximum
permanent transverse displacement\ which has been proved greater than the experimental results
"Jones\ 0878#[

7[ Conclusions

Uni_ed yield criterion with piecewise linear mathematical expression are applied successfully to
analyze the dynamic response behavior for simply supported circular plate under moderate impul!
sive load[ A series of analytical results are illustrated to show the e}ects of yield criteria to dynamic
behavior of the plate[ Particularly\ the results show\ the Tresca criterion "b � 9# leads to maximum
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Fig[ 8[ Displacement responses at the plate center "rp � 0\ a � ad#[

Fig[ 09[ Velocity responses at the plate center "rp � 0\ a � ad#[

transverse displacement response and minimum statically admissible impulsive load[ While the
twin shear stress criterion predicting the minimum transverse displacement response and maximum
statically admissible impulsive loading[ Solution of the Mises criterion are approximated by the
linear function of the UYC with b � 9[4[ This paper clearly illustrated the in~uences of yield
criteria on the dynamic behavior of the plate[ It shows that the in~uences are greater for the plate
in dynamic plastic limit state than in static plastic limit state[

The solutions of this paper have theoretical meaning and more wider application range[ By
choosing a certain material parameter\ the uni_ed yield criterion can be applied to all the isotropic
metal materials[ The authors suggested two types of moment pro_les when the plate is subjected
to partial uniformly distributed intense impulsive load\ which will be presented in the future[
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Fig[ 00[ "a# Moment pro_les of the _rst phase of motion "a � ad\ rd � 9[90#[ "b# Velocity pro_les of the _rst phase of
motion "a � ad\ rd � 9[90#[
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Fig[ 01[ Permanently deformed transverse displacement "a � ad\ rp � 9[90#[

Fig[ 02[ Curves of ad to rp[
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Fig[ 03[ Curves of h to rp[

Fig[ 04[ Relations of pd and ps to parameter b"rp � 0#[
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Fig[ 05[ Permanently deformed transverse displacement "rp � 0\ p9 � 01#[
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